Bibliography
Ag, D., Bongartz R., Dogan, E. L., Seleci, M., Walter, G. J., Demirkol O. D., Stahl F., Ozcelik S., Timur S., & Scheper T. (2014).
Biofunctional quantum dots as fluorescence probe for cell-specific targeting. Colloids and Surfaces B: Biointerface, issue 114, pg. 96-103. Retrieved from: http://www.luminpdf.com/files/4431743/1-s2.0-S0927776513006012-main.pdf
Functional groups. (n.d.) University of Texas. Retrieved from:
http://www.as.utexas.edu/astronomy/education/spring07/scalo/secure/AbioFunctionalGrpsVollIRspect.pdf
Goa, X., Yang, L., Petros, J.A., Marshall, F.F., Simons, J.W., & Nie S. (2005). In vivo molecular and cellular imaging with
quantum dots. Elsevier. Retrieved from: http://www.openaspdf.com/files/29229/1-s2.0-S0958166904001648-main.pdf
Guo, W., Chen, N., Tu, Y., Dong, C., Zhang, B., Hu, C., & Chang, J. (2013). Synthesis of Zn-Cu-In-S/ZnS Core/Shell Quantum
Dots with Inhibited Blue-Shift Photoluminescence and Applications for Tumor Targeted Bioimaging. Theranostics, 3(2), 99-103. Retrieved from: http://www.thno.org/v03p0099.htm
Jaiswal, J.K., & Simon, S.M. (2004). Potentials and pitfalls of fluorescent quantum dots. Trends in Cell Biology. Retrieved
from: http://www.openaspdf.com/files/29171/1-s2.0-S0962892404001916-main.pdf
Korala, L., Wang, Z., Liu, Y., Maldonado, S., & Brock, L. S. (2013). Uniform thin films of CdSe/CdSe(ZnS) Core(shell) quantum
dots by sol-gel assembly: Enabling photoelectrochemical characterization and electronic application. National Institute of Health Public Access, pg. 1215-1223. Retrieved from: http://www.luminpdf.com/files/4432058/nihms442159.pdf
Lai, Y., Say, L., Jiang, Y., Wun, J., Feng, Y., Tan, X., & Wong, S. (2004). Use of Semiconductor Quantum Dots for Photostable
Immunofluorescence Labeling of Cryptosporidium parvum. Applied and Environmental Microbiology, 70(10), 5732-5736. Retrieved June 25, 2015, from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC522072/
Lee, K.H., Galloway, J.F., Park, J., Dvoracek, C.M., & Dallas, M. (2012). Quantitative molecular profiling of biomarkers for
pancreatic cancer with functionalized quantum dots. Nanomedicine: Nanotechnology, Biology, and Medicine. Retrieved from: http://www.openaspdf.com/files/29104/1-s2.0-S1549963412000123-main.pdf
Liang, L., Daou, T., Texier, I., Tran, T., Nguyen, Q., & Reiss, P. (2009). Highly luminescent CuInS2/ZnS core/shell
nanocrystals: cadmium-free quantum dots for in vivo imaging. Chemistry of Materials. 21: 2422-2439.
Mandal, A., Dandapat, A., De, G. (2012). Magic sized ZnS quantum dots as a highly sensitive and selective fluorescence
sensor probe for Ag+ ions. Analyst. Retrieved from: http://pubs.rsc.org/en/content/articlelanding/2012/AN/c1an15653e
Okaba, Y. (2007). Quantum dots for in vivo imaging. Retrieved from:
http://bme240.eng.uci.edu/students/07s/yokabe/main.htm
Pong, B., Trout, L. B., Lee, J. (2005). Preparation of DNA-functionalised CdSe/ZnS Quantum Dots. Retrieved from:
http://dspace.mit.edu/bitstream/handle/1721.1/35870/cpe008.pdf?sequence=1
Quantum Dots. (2012). Sigma-Aldrich. Retrieved from: http://www.sigmaaldrich.com/materials-
science/nanomaterials/quantum-dots.html
Shamsipur, M., Rajabi, H.R. (2013). Pure zinc sulfide quantum dots as highly selective luminescent probe for determination of
hazardous cyanide ion. Materials science and Engineering. Retrieved from: http://www.openaspdf.com/files/29153/1-s2.0-S0928493113006620-main.pdf
Shao, L., Gao, Y., Feng, Y. (2011). Semiconductor Quantum Dots for Biomedicial Applications. Sensors, 11(1), 11736-11751.
doi:10.3390
Smith, M. A., Dave, S., Nie, S., True, L., Gao, X. (2006). Multicolor quantum dots for molecular diagnostics of cancer. Future
Drugs. Retrieved from: http://www.luminpdf.com/files/4432823/MDcancer.pdf
Weng, J. (2006). Luminescent quantum dots: a very attractive and promising tool in biomedicine. Current Medical Chemistry.
Retrieved from: http://www.ncbi.nlm.nih.gov/pubmed/16611074
Winter, J.O., Gomez, N., Gatzert, S., Schimdt, C.E., Korgel, B.A. (2004). Variation of
cadmium sulfide nanoparticle size and photoluminescence intensity with altered aqueous synthesis conditions. Colloids and Surfaces A: Physiochemcal and Engineering Aspects. 254: 147-157.
Yonezawa, T., Kunitake, T. (1999). Practical preparation of anionic mercapto ligand-stabilized gold nanoparticles and their
immobilization. Colloids and Surfaces A: Physicochemical and Engineering Aspects. Retrieved from: http://www.sciencedirect.com/science/article/pii/S0927775798003094
Yu, S., Campisi, J., Higano, C., Beer, T., Porter, P., Coleman, I., … Nelson, P. (2012). Treatment-induced damage to the
tumour microenvironment promotes prostate cancer therapy resistance through WNT16B. Nature Medicine, 18(1), 1359-1368. doi: 10.1038/nm.2890.